Physical Science
After Physics presents ambitious new essays about some of the deepest questions at the foundations of physics, by the physicist and philosopher David Albert. The book's title alludes to the close connections between physics and metaphysics, much in evidence throughout these essays. It also alludes to the work of imagining what it would be like for the project of physical science--considered as an investigation into the fundamental laws of nature--to be complete.
Albert argues that the difference between the past and the future--traditionally regarded as a matter for metaphysical or conceptual or linguistic or phenomenological analysis--can be understood as a mechanical phenomenon of nature. In another essay he contends that all versions of quantum mechanics that are compatible with the special theory of relativity make it impossible, even in principle, to present the entirety of what can be said about the world as a narrative sequence of "befores" and "afters." Any sensible and realistic way of solving the quantum-mechanical measurement problem, Albert claims in yet another essay, is ultimately going to force us to think of particles and fields, and even the very space of the standard scientific conception of the world, as approximate and emergent. Novel discussions of the problem of deriving principled limits on what can be known, measured, or communicated from our fundamental physical theories, along with a sweeping critique of the main attempts at making sense of probabilities in many-worlds interpretations of quantum mechanics, round out the collection.
A century ago, discoveries in physics came together with engineering to produce an array of astonishing new technologies that radically reshaped the world: radios, televisions, aircraft, computers, and a host of still-evolving digital tools. Today, a new technological convergence--of biology and engineering--promises to create the tools necessary to tackle the threats we now face, including climate change, drought, famine, and disease
World-renowned neuroscientist and academic leader Susan Hockfield describes the most exciting new developments and the scientists and engineers who helped to create them. Virus-built batteries. Cancer-detecting nanoparticles. Computer-engineered crops. Together, they highlight the promise of the technology revolution of the twenty-first century to overcome some of the greatest humanitarian, medical, and environmental challenges of our time.
This classic work in the philosophy of physical science is an incisive and readable account of the scientific method. Pierre Duhem was one of the great figures in French science, a devoted teacher, and a distinguished scholar of the history and philosophy of science. This book represents his most mature thought on a wide range of topics.
In the bestselling tradition of Stuff Matters and The Disappearing Spoon: a clever and engaging look at materials, the innovations they made possible, and how these technologies changed us.
In The Alchemy of Us, scientist and science writer Ainissa Ramirez examines eight inventions--clocks, steel rails, copper communication cables, photographic film, light bulbs, hard disks, scientific labware, and silicon chips--and reveals how they shaped the human experience. Ramirez tells the stories of the woman who sold time, the inventor who inspired Edison, and the hotheaded undertaker whose invention pointed the way to the computer. She describes, among other things, how our pursuit of precision in timepieces changed how we sleep; how the railroad helped commercialize Christmas; how the necessary brevity of the telegram influenced Hemingway's writing style; and how a young chemist exposed the use of Polaroid's cameras to create passbooks to track black citizens in apartheid South Africa. These fascinating and inspiring stories offer new perspectives on our relationships with technologies.
Ramirez shows not only how materials were shaped by inventors but also how those materials shaped culture, chronicling each invention and its consequences--intended and unintended. Filling in the gaps left by other books about technology, Ramirez showcases little-known inventors--particularly people of color and women--who had a significant impact but whose accomplishments have been hidden by mythmaking, bias, and convention. Doing so, she shows us the power of telling inclusive stories about technology. She also shows that innovation is universal--whether it's splicing beats with two turntables and a microphone or splicing genes with two test tubes and CRISPR.
If you're a science and data nerd like me, you may be interested in Alice and Bob Meet the Wall of Fire and The Prime Number Conspiracy from Quanta Magazine and Thomas Lin. - Bill Gates
These stories reveal the latest efforts to untangle the mysteries of the universe. Bringing together the best and most interesting science stories appearing in Quanta Magazine over the past five years, Alice and Bob Meet the Wall of Fire reports on some of the greatest scientific minds as they test the limits of human knowledge. Quanta, under editor-in-chief Thomas Lin, is the only popular publication that offers in-depth coverage of today's challenging, speculative, cutting-edge science. It communicates science by taking it seriously, wrestling with difficult concepts and clearly explaining them in a way that speaks to our innate curiosity about our world and ourselves.
In the title story, Alice and Bob--beloved characters of various thought experiments in physics--grapple with gravitational forces, possible spaghettification, and a massive wall of fire as Alice jumps into a black hole. Another story considers whether the universe is impossible, in light of experimental results at the Large Hadron Collider. We learn about quantum reality and the mystery of quantum entanglement; explore the source of time's arrow; and witness a eureka moment when a quantum physicist exclaims: "Finally, we can understand why a cup of coffee equilibrates in a room." We reflect on humans' enormous skulls and the Brain Boom; consider the evolutionary benefits of loneliness; peel back the layers of the newest artificial-intelligence algorithms; follow the "battle for the heart and soul of physics"; and mourn the disappearance of the "diphoton bump," revealed to be a statistical fluctuation rather than a revolutionary new particle. These stories from Quanta give us a front-row seat to scientific discovery.
Contributors
Philip Ball, K. C. Cole, Robbert Dijkgraaf, Dan Falk, Courtney Humphries, Ferris Jabr, Katia Moskvitch, George Musser, Michael Nielsen, Jennifer Ouellette, John Pavlus, Emily Singer, Andreas von Bubnoff, Frank Wilczek, Natalie Wolchover, Carl Zimmer
As a young science fiction fan, physicist James Kakalios marveled at the future predicted in the pulp magazines, comics, and films of the '50s and '60s. By 2010, he was sure we'd have flying cars and jetpacks. But what we ended up with-laptop computers, MRI machines, Blu-ray players, and dozens of other real-life marvels-are even more fantastic. In The Amazing Story of Quantum Mechanics, he explains why the development of quantum mechanics enabled our amazing present day.
In his trademark style, Kakalios uses pop culture examples- everything from the graphic novel Watchmen to schlock horror movies of the '50s-to elucidate some of the most complex science there is. And he brings to life the groundbreaking scientists whose discoveries made our present life possible. Along the way, he dispels the misconception that quantum mechanics is unknowable by mere mortals. It's not magic; it's science!
Benjamin Franklin is well known to most of us, yet his fundamental and wide-ranging contributions to science are still not adequately understood. Until now he has usually been incorrectly regarded as a practical inventor and tinkerer rather than a scientific thinker. He was elected to membership in the elite Royal Society because his experiments and original theory of electricity had made a science of that new subject. His popular fame came from his two lightning experiments--the sentry-box experiment and the later and more famous experiment of the kite--which confirmed his theoretical speculations about the identity of electricity and provided a basis for the practical invention of the lightning rod. Franklin advanced the eighteenth-century understanding of all phenomena of electricity and provided a model for experimental science in general.
I. Bernard Cohen, an eminent historian of science and the principal elucidator of Franklin's scientific work, examines his activities in fields ranging from heat to astronomy. He provides masterful accounts of the theoretical background of Franklin's science (especially his study of Newton), the experiments he performed, and their influence throughout Europe as well as the United States. Cohen emphasizes that Franklin's political and diplomatic career cannot be understood apart from his scientific activities, which established his reputation and brought him into contact with leaders of British and European society. A supplement by Samuel J. Edgerton considers Franklin's attempts to improve the design of heating stoves, another practical application that arose from theoretical interests. This volume will be valuable to all readers wanting to learn more about Franklin and to gain a deeper appreciation of the development of science in America.In clear, engaging language, Gribbin takes us through the history of cosmological discoveries, focusing in particular on the seventy years since the Big Bang model of the origin of the universe. He explains how conflicting views of the age of the universe and stars converged in the 1990s because scientists (including Gribbin) were able to use data from the Hubble Space Telescope that measured distances across the universe.
N. Katherine Hayles here investigates parallels between contemporary literature and critical theory and the science of chaos. She finds in both scientific and literary discourse new interpretations of chaos, which is seen no longer as disorder but as a locus of maximum information and complexity. She examines structures and themes of disorder in The Education of Henry Adams, Doris Lessing's Golden Notebook, and works by Stanislaw Lem. Hayles shows how the writings of poststructuralist theorists including Barthes, Lyotard, Derrida, Serres, and de Man incorporate central features of chaos theory.
-- "Times Literary Supplement" In these "Messenger Lectures," originally delivered at Cornell University and recorded for television by the BBC, Richard Feynman offers an overview of selected physical laws and gathers their common features into one broad principle of invariance. He maintains at the outset that the importance of a physical law is not "how clever we are to have found it out, but . . . how clever nature is to pay attention to it, " and tends his discussions toward a final exposition of the elegance and simplicity of all scientific laws. Rather than an essay on the most significant achievements in modern science, "The Character of Physical Law" is a statement of what is most remarkable in nature. Feynman's enlightened approach, his wit, and his enthusiasm make this a memorable exposition of the scientist's craft.
The Law of Gravitation is the author's principal example. Relating the details of its discovery and stressing its mathematical character, he uses it to demonstrate the essential interaction of mathematics and physics. He views mathematics as the key to any system of scientific laws, suggesting that if it were possible to fill out the structure of scientific theory completely, the result would be an integrated set of mathematical axioms. The principles of conservation, symmetry, and time-irreversibility are then considered in relation to developments in classical and modern physics, and in his final lecture Feynman develops his own analysis of the process and future of scientific discovery.
Like any set of oral reflections, "TheCharacter of Physical Law" has special value as a demonstration of the mind in action. The reader is particularly lucky in Richard Feynman. One of the most eminent and imaginative modern physicists, he was Professor of Theoretical Physics at the California Institute of Technology until his death in 1988. He is best known for his work on the quantum theory of the electromagnetic field, as well as for his later research in the field of low-temperature physics. In 1954 he received the Albert Einstein Award for his "outstanding contribution to knowledge in mathematical and physical sciences"; in 1965 he was appointed to Foreign Membership in the Royal Society and was awarded the Nobel Prize.